- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0003000003000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Arjevani, Yossi (5)
-
Carmon, Yair (3)
-
Duchi, John C. (3)
-
Foster, Dylan J. (3)
-
Srebro, Nathan (3)
-
Sekhari, Ayush (2)
-
Shamir, Ohad (2)
-
Sridharan, Karthik (2)
-
Arjevani Yossi (1)
-
Carmon Yair (1)
-
Duchi John C. (1)
-
Foster Dylan J. (1)
-
Srebro Nathan (1)
-
Woodworth Blake (1)
-
Woodworth, Blake (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Arjevani, Yossi; Shamir, Ohad; Srebro, Nathan (, International Conference on Algorithmic Learning Theory 2020)null (Ed.)
-
Arjevani, Yossi; Carmon, Yair; Duchi, John C.; Foster, Dylan J.; Sekhari, Ayush; Sridharan, Karthik (, Conference on Learning Theory)
-
Arjevani, Yossi; Carmon, Yair; Duchi, John C.; Foster, Dylan J.; Sekhari, Ayush; Sridharan, Karthik (, COLT)
-
Arjevani, Yossi; Shamir, Ohad; Srebro, Nathan (, arXiv.org)We provide tight finite-time convergence bounds for gradient descent and stochastic gradient descent on quadratic functions, when the gradients are delayed and reflect iterates from τ rounds ago. First, we show that without stochastic noise, delays strongly affect the attainable optimization error: In fact, the error can be as bad as non-delayed gradient descent ran on only 1/τ of the gradients. In sharp contrast, we quantify how stochastic noise makes the effect of delays negligible, improving on previous work which only showed this phenomenon asymptotically or for much smaller delays. Also, in the context of distributed optimization, the results indicate that the performance of gradient descent with delays is competitive with synchronous approaches such as mini-batching. Our results are based on a novel technique for analyzing convergence of optimization algorithms using generating functions.more » « less
-
Arjevani Yossi; Carmon Yair; Duchi John C.; Foster Dylan J.; Srebro Nathan; Woodworth Blake (, ArXivorg)
An official website of the United States government

Full Text Available